为 Voronoi 图着色

2025-03-20 08:47:00
admin
原创
42
摘要:问题描述:我正在尝试为使用创建的 Voronoi 图着色scipy.spatial.Voronoi。这是我的代码:import numpy as np import matplotlib.pyplot as plt from scipy.spatial import Voronoi, voronoi_plot...

问题描述:

我正在尝试为使用创建的 Voronoi 图着色scipy.spatial.Voronoi。这是我的代码:

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import Voronoi, voronoi_plot_2d

# make up data points
points = np.random.rand(15,2)

# compute Voronoi tesselation
vor = Voronoi(points)

# plot
voronoi_plot_2d(vor)

# colorize
for region in vor.regions:
    if not -1 in region:
        polygon = [vor.vertices[i] for i in region]
        plt.fill(*zip(*polygon))

plt.show()

生成的图像:

Voronoi 图

如您所见,图像边界上的一些 Voronoi 区域没有颜色。这是因为这些区域的 Voronoi 顶点的一些索引设置为-1,即 Voronoi 图之外的那些顶点。根据文档:

区域:(整数列表列表,形状(nregions,*))形成每个 Voronoi 区域的 Voronoi 顶点的索引。-1 表示 Voronoi 图之外的顶点。

为了给这些区域着色,我尝试过从多边形中删除这些“外部”顶点,但没用。我认为,我需要在图像区域的边界上填充一些点,但我似乎无法弄清楚如何合理地实现这一点。

有人可以帮忙吗?


解决方案 1:

Voronoi 数据结构包含构建“无穷远点”位置所需的所有信息。Qhull 还将它们简单地报告为-1索引,因此 Scipy 不会为您计算它们。

https://gist.github.com/pv/8036995

http://nbviewer.ipython.org/gist/pv/8037100

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import Voronoi

def voronoi_finite_polygons_2d(vor, radius=None):
    """
    Reconstruct infinite voronoi regions in a 2D diagram to finite
    regions.

    Parameters
    ----------
    vor : Voronoi
        Input diagram
    radius : float, optional
        Distance to 'points at infinity'.

    Returns
    -------
    regions : list of tuples
        Indices of vertices in each revised Voronoi regions.
    vertices : list of tuples
        Coordinates for revised Voronoi vertices. Same as coordinates
        of input vertices, with 'points at infinity' appended to the
        end.

    """

    if vor.points.shape[1] != 2:
        raise ValueError("Requires 2D input")

    new_regions = []
    new_vertices = vor.vertices.tolist()

    center = vor.points.mean(axis=0)
    if radius is None:
        radius = vor.points.ptp().max()

    # Construct a map containing all ridges for a given point
    all_ridges = {}
    for (p1, p2), (v1, v2) in zip(vor.ridge_points, vor.ridge_vertices):
        all_ridges.setdefault(p1, []).append((p2, v1, v2))
        all_ridges.setdefault(p2, []).append((p1, v1, v2))

    # Reconstruct infinite regions
    for p1, region in enumerate(vor.point_region):
        vertices = vor.regions[region]

        if all(v >= 0 for v in vertices):
            # finite region
            new_regions.append(vertices)
            continue

        # reconstruct a non-finite region
        ridges = all_ridges[p1]
        new_region = [v for v in vertices if v >= 0]

        for p2, v1, v2 in ridges:
            if v2 < 0:
                v1, v2 = v2, v1
            if v1 >= 0:
                # finite ridge: already in the region
                continue

            # Compute the missing endpoint of an infinite ridge

            t = vor.points[p2] - vor.points[p1] # tangent
            t /= np.linalg.norm(t)
            n = np.array([-t[1], t[0]])  # normal

            midpoint = vor.points[[p1, p2]].mean(axis=0)
            direction = np.sign(np.dot(midpoint - center, n)) * n
            far_point = vor.vertices[v2] + direction * radius

            new_region.append(len(new_vertices))
            new_vertices.append(far_point.tolist())

        # sort region counterclockwise
        vs = np.asarray([new_vertices[v] for v in new_region])
        c = vs.mean(axis=0)
        angles = np.arctan2(vs[:,1] - c[1], vs[:,0] - c[0])
        new_region = np.array(new_region)[np.argsort(angles)]

        # finish
        new_regions.append(new_region.tolist())

    return new_regions, np.asarray(new_vertices)

# make up data points
np.random.seed(1234)
points = np.random.rand(15, 2)

# compute Voronoi tesselation
vor = Voronoi(points)

# plot
regions, vertices = voronoi_finite_polygons_2d(vor)
print "--"
print regions
print "--"
print vertices

# colorize
for region in regions:
    polygon = vertices[region]
    plt.fill(*zip(*polygon), alpha=0.4)

plt.plot(points[:,0], points[:,1], 'ko')
plt.xlim(vor.min_bound[0] - 0.1, vor.max_bound[0] + 0.1)
plt.ylim(vor.min_bound[1] - 0.1, vor.max_bound[1] + 0.1)

plt.show()

在此处输入图片描述

解决方案 2:

我对这个问题有一个更简单的解决方案,那就是在调用 Voronoi 算法之前将 4 个远距离虚拟点添加到你的点列表中。

根据您的代码,我添加了两行。

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import Voronoi, voronoi_plot_2d

# make up data points
points = np.random.rand(15,2)

# add 4 distant dummy points
points = np.append(points, [[999,999], [-999,999], [999,-999], [-999,-999]], axis = 0)

# compute Voronoi tesselation
vor = Voronoi(points)

# plot
voronoi_plot_2d(vor)

# colorize
for region in vor.regions:
    if not -1 in region:
        polygon = [vor.vertices[i] for i in region]
        plt.fill(*zip(*polygon))

# fix the range of axes
plt.xlim([0,1]), plt.ylim([0,1])

plt.show()

那么得到的图形就如下所示。
在此处输入图片描述

解决方案 3:

我认为,如果不重新进行至少部分 voronoi 计算,vor 结构中可用的数据信息不足以解决这个问题。既然如此,以下是原始 voronoi_plot_2d 函数的相关部分,您应该能够使用这些部分提取与 vor.max_bound 或 vor.min_bound 相交的点(这些点是图表的左下角和右上角),以便找出多边形的其他坐标。

for simplex in vor.ridge_vertices:
    simplex = np.asarray(simplex)
    if np.all(simplex >= 0):
        ax.plot(vor.vertices[simplex,0], vor.vertices[simplex,1], 'k-')

ptp_bound = vor.points.ptp(axis=0)
center = vor.points.mean(axis=0)
for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices):
    simplex = np.asarray(simplex)
    if np.any(simplex < 0):
        i = simplex[simplex >= 0][0]  # finite end Voronoi vertex

        t = vor.points[pointidx[1]] - vor.points[pointidx[0]]  # tangent
        t /= np.linalg.norm(t)
        n = np.array([-t[1], t[0]])  # normal

        midpoint = vor.points[pointidx].mean(axis=0)
        direction = np.sign(np.dot(midpoint - center, n)) * n
        far_point = vor.vertices[i] + direction * ptp_bound.max()

        ax.plot([vor.vertices[i,0], far_point[0]],
                [vor.vertices[i,1], far_point[1]], 'k--')
相关推荐
  政府信创国产化的10大政策解读一、信创国产化的背景与意义信创国产化,即信息技术应用创新国产化,是当前中国信息技术领域的一个重要发展方向。其核心在于通过自主研发和创新,实现信息技术应用的自主可控,减少对外部技术的依赖,并规避潜在的技术制裁和风险。随着全球信息技术竞争的加剧,以及某些国家对中国在科技领域的打压,信创国产化显...
工程项目管理   2482  
  为什么项目管理通常仍然耗时且低效?您是否还在反复更新电子表格、淹没在便利贴中并参加每周更新会议?这确实是耗费时间和精力。借助软件工具的帮助,您可以一目了然地全面了解您的项目。如今,国内外有足够多优秀的项目管理软件可以帮助您掌控每个项目。什么是项目管理软件?项目管理软件是广泛行业用于项目规划、资源分配和调度的软件。它使项...
项目管理软件   1533  
  PLM(产品生命周期管理)项目对于企业优化产品研发流程、提升产品质量以及增强市场竞争力具有至关重要的意义。然而,在项目推进过程中,范围蔓延是一个常见且棘手的问题,它可能导致项目进度延迟、成本超支以及质量下降等一系列不良后果。因此,有效避免PLM项目范围蔓延成为项目成功的关键因素之一。以下将详细阐述三大管控策略,助力企业...
plm系统   0  
  PLM(产品生命周期管理)项目管理在企业产品研发与管理过程中扮演着至关重要的角色。随着市场竞争的加剧和产品复杂度的提升,PLM项目面临着诸多风险。准确量化风险优先级并采取有效措施应对,是确保项目成功的关键。五维评估矩阵作为一种有效的风险评估工具,能帮助项目管理者全面、系统地评估风险,为决策提供有力支持。五维评估矩阵概述...
免费plm软件   0  
  引言PLM(产品生命周期管理)开发流程对于企业产品的全生命周期管控至关重要。它涵盖了从产品概念设计到退役的各个阶段,直接影响着产品质量、开发周期以及企业的市场竞争力。在当今快速发展的科技环境下,客户对产品质量的要求日益提高,市场竞争也愈发激烈,这就使得优化PLM开发流程成为企业的必然选择。缺陷管理工具和六西格玛方法作为...
plm产品全生命周期管理   0  
热门文章
项目管理软件有哪些?
曾咪二维码

扫码咨询,免费领取项目管理大礼包!

云禅道AD
禅道项目管理软件

云端的项目管理软件

尊享禅道项目软件收费版功能

无需维护,随时随地协同办公

内置subversion和git源码管理

每天备份,随时转为私有部署

免费试用