如何从 Python 中的混淆矩阵获取精度、召回率和 f 度量

2025-04-15 09:20:00
admin
原创
36
摘要:问题描述:我正在使用 Python,并且有一些混淆矩阵。我想通过混淆矩阵计算多类别分类中的精确率、召回率和 f 度量。我的结果日志不包含y_true和y_pred,只包含混淆矩阵。你能告诉我如何从多类分类中的混淆矩阵中获取这些分数吗?解决方案 1:让我们考虑 MNIST 数据分类(10 个类)的情况,其中对于...

问题描述:

我正在使用 Python,并且有一些混淆矩阵。我想通过混淆矩阵计算多类别分类中的精确率、召回率和 f 度量。我的结果日志不包含y_truey_pred,只包含混淆矩阵。

你能告诉我如何从多类分类中的混淆矩阵中获取这些分数吗?


解决方案 1:

让我们考虑 MNIST 数据分类(10 个类)的情况,其中对于 10,000 个样本的测试集,我们得到以下混淆矩阵cm(Numpy 数组):

array([[ 963,    0,    0,    1,    0,    2,   11,    1,    2,    0],
       [   0, 1119,    3,    2,    1,    0,    4,    1,    4,    1],
       [  12,    3,  972,    9,    6,    0,    6,    9,   13,    2],
       [   0,    0,    8,  975,    0,    2,    2,   10,   10,    3],
       [   0,    2,    3,    0,  953,    0,   11,    2,    3,    8],
       [   8,    1,    0,   21,    2,  818,   17,    2,   15,    8],
       [   9,    3,    1,    1,    4,    2,  938,    0,    0,    0],
       [   2,    7,   19,    2,    2,    0,    0,  975,    2,   19],
       [   8,    5,    4,    8,    6,    4,   14,   11,  906,    8],
       [  11,    7,    1,   12,   16,    1,    1,    6,    5,  949]])

为了获得每个类的准确率和召回率,我们需要计算每个类的TP(准确率)、FP(预测准确率)和FN(召回率)。我们不需要TN(总准确率),但我们也会计算它,因为它有助于我们进行健全性检查。

真正例只是对角线元素:

# numpy should have already been imported as np
TP = np.diag(cm)
TP
# array([ 963, 1119,  972,  975,  953,  818,  938,  975,  906,  949])

误报是相应列的总和减去对角线元素(即 TP 元素):

FP = np.sum(cm, axis=0) - TP
FP
# array([50, 28, 39, 56, 37, 11, 66, 42, 54, 49])

类似地,假阴性是相应行的总和减去对角线(即 TP)元素:

FN = np.sum(cm, axis=1) - TP
FN
# array([17, 16, 60, 35, 29, 74, 20, 53, 68, 60])

现在,真负例有点棘手;我们先来思考一下,对于 类 来说,真负例到底是什么意思0:它指的是所有被正确识别为不 的样本0。因此,我们本质上应该做的是从混淆矩阵中删除相应的行和列,然后对所有剩余元素求和:

num_classes = 10
TN = []
for i in range(num_classes):
    temp = np.delete(cm, i, 0)    # delete ith row
    temp = np.delete(temp, i, 1)  # delete ith column
    TN.append(sum(sum(temp)))
TN
# [8970, 8837, 8929, 8934, 8981, 9097, 8976, 8930, 8972, 8942]

让我们进行一次健全性检查:对于每个类,TP、FP、FN 和 TN 的总和必须等于我们的测试集的大小(此处为 10,000):让我们确认确实如此:

l = 10000
for i in range(num_classes):
    print(TP[i] + FP[i] + FN[i] + TN[i] == l)

结果是

True
True
True
True
True
True
True
True
True
True

计算出这些数量后,现在可以直接获得每个类的精度和召回率:

precision = TP/(TP+FP)
recall = TP/(TP+FN)

对于这个例子来说

precision
# array([ 0.95064166,  0.97558849,  0.96142433,  0.9456838 ,  0.96262626,
#         0.986731  ,  0.93426295,  0.95870206,  0.94375   ,  0.9509018])

recall
# array([ 0.98265306,  0.98590308,  0.94186047,  0.96534653,  0.97046843,
#         0.91704036,  0.97912317,  0.94844358,  0.9301848 ,  0.94053518])

类似地,我们可以计算相关数量,例如特异性(回想一下,敏感性与召回率是同一回事):

specificity = TN/(TN+FP)

我们的示例的结果:

specificity
# array([0.99445676, 0.99684151, 0.9956512 , 0.99377086, 0.99589709,
#        0.99879227, 0.99270073, 0.99531877, 0.99401728, 0.99455011])

现在您应该能够针对任何大小的混淆矩阵虚拟地计算这些数量。

解决方案 2:

假设您有以下形式的混淆矩阵:

cmat = [[ 5,  7], 
        [25, 37]]

可以实现如下简单函数:

def myscores(smat): 
    tp = smat[0][0] 
    fp = smat[0][1] 
    fn = smat[1][0] 
    tn = smat[1][1] 
    return tp/(tp+fp), tp/(tp+fn)

测试:

print("precision and recall:", myscores(cmat))

输出:

precision and recall: (0.4166666666666667, 0.16666666666666666)

上述函数还可以扩展以产生其他分数,其公式在https://en.wikipedia.org/wiki/Confusion_matrix中提到。

解决方案 3:

有一个名为 “disarray”的包。

因此,如果我有四个班级:

import numpy as np
a = np.random.randint(0,4,[100])
b = np.random.randint(0,4,[100])

我可以使用 disarray 来计算 13 个矩阵:

import disarray

# Instantiate the confusion matrix DataFrame with index and columns
cm = confusion_matrix(a,b)
df = pd.DataFrame(cm, index= ['a','b','c','d'], columns=['a','b','c','d'])
df.da.export_metrics()

结果是:

在此处输入图片描述

相关推荐
  政府信创国产化的10大政策解读一、信创国产化的背景与意义信创国产化,即信息技术应用创新国产化,是当前中国信息技术领域的一个重要发展方向。其核心在于通过自主研发和创新,实现信息技术应用的自主可控,减少对外部技术的依赖,并规避潜在的技术制裁和风险。随着全球信息技术竞争的加剧,以及某些国家对中国在科技领域的打压,信创国产化显...
工程项目管理   2482  
  为什么项目管理通常仍然耗时且低效?您是否还在反复更新电子表格、淹没在便利贴中并参加每周更新会议?这确实是耗费时间和精力。借助软件工具的帮助,您可以一目了然地全面了解您的项目。如今,国内外有足够多优秀的项目管理软件可以帮助您掌控每个项目。什么是项目管理软件?项目管理软件是广泛行业用于项目规划、资源分配和调度的软件。它使项...
项目管理软件   1533  
  PLM(产品生命周期管理)项目对于企业优化产品研发流程、提升产品质量以及增强市场竞争力具有至关重要的意义。然而,在项目推进过程中,范围蔓延是一个常见且棘手的问题,它可能导致项目进度延迟、成本超支以及质量下降等一系列不良后果。因此,有效避免PLM项目范围蔓延成为项目成功的关键因素之一。以下将详细阐述三大管控策略,助力企业...
plm系统   0  
  PLM(产品生命周期管理)项目管理在企业产品研发与管理过程中扮演着至关重要的角色。随着市场竞争的加剧和产品复杂度的提升,PLM项目面临着诸多风险。准确量化风险优先级并采取有效措施应对,是确保项目成功的关键。五维评估矩阵作为一种有效的风险评估工具,能帮助项目管理者全面、系统地评估风险,为决策提供有力支持。五维评估矩阵概述...
免费plm软件   0  
  引言PLM(产品生命周期管理)开发流程对于企业产品的全生命周期管控至关重要。它涵盖了从产品概念设计到退役的各个阶段,直接影响着产品质量、开发周期以及企业的市场竞争力。在当今快速发展的科技环境下,客户对产品质量的要求日益提高,市场竞争也愈发激烈,这就使得优化PLM开发流程成为企业的必然选择。缺陷管理工具和六西格玛方法作为...
plm产品全生命周期管理   0  
热门文章
项目管理软件有哪些?
曾咪二维码

扫码咨询,免费领取项目管理大礼包!

云禅道AD
禅道项目管理软件

云端的项目管理软件

尊享禅道项目软件收费版功能

无需维护,随时随地协同办公

内置subversion和git源码管理

每天备份,随时转为私有部署

免费试用