在 Python 中获取矩阵/列表列表中的所有对角线
- 2025-03-05 09:17:00
- admin 原创
- 66
问题描述:
我正在寻找一种 Pythonic 方法来获取(方形)矩阵的所有对角线,以列表列表的形式表示。
假设我有以下矩阵:
matrix = [[-2, 5, 3, 2],
[ 9, -6, 5, 1],
[ 3, 2, 7, 3],
[-1, 8, -4, 8]]
然后大对角线很容易:
l = len(matrix[0])
print([matrix[i][i] for i in range(l)]) # [-2, -6, 7, 8]
print([matrix[l-1-i][i] for i in range(l-1,-1,-1)]) # [ 2, 5, 2, -1]
但是我很难想出一种方法来生成所有对角线。我正在寻找的输出是:
[[-2], [9, 5], [3,-6, 3], [-1, 2, 5, 2], [8, 7, 1], [-4, 3], [8],
[2], [3,1], [5, 5, 3], [-2, -6, 7, 8], [9, 2, -4], [3, 8], [-1]]
解决方案 1:
在numpy中可能有比下面更好的方法来实现它,但我还不太熟悉:
import numpy as np
matrix = np.array(
[[-2, 5, 3, 2],
[ 9, -6, 5, 1],
[ 3, 2, 7, 3],
[-1, 8, -4, 8]])
diags = [matrix[::-1,:].diagonal(i) for i in range(-3,4)]
diags.extend(matrix.diagonal(i) for i in range(3,-4,-1))
print [n.tolist() for n in diags]
输出
[[-2], [9, 5], [3, -6, 3], [-1, 2, 5, 2], [8, 7, 1], [-4, 3], [8], [2], [3, 1], [5, 5, 3], [-2, -6, 7, 8], [9, 2, -4], [3, 8], [-1]]
编辑:已更新以适用于任何矩阵大小。
import numpy as np
# Alter dimensions as needed
x,y = 3,4
# create a default array of specified dimensions
a = np.arange(x*y).reshape(x,y)
print a
print
# a.diagonal returns the top-left-to-lower-right diagonal "i"
# according to this diagram:
#
# 0 1 2 3 4 ...
# -1 0 1 2 3
# -2 -1 0 1 2
# -3 -2 -1 0 1
# :
#
# You wanted lower-left-to-upper-right and upper-left-to-lower-right diagonals.
#
# The syntax a[slice,slice] returns a new array with elements from the sliced ranges,
# where "slice" is Python's [start[:stop[:step]] format.
# "::-1" returns the rows in reverse. ":" returns the columns as is,
# effectively vertically mirroring the original array so the wanted diagonals are
# lower-right-to-uppper-left.
#
# Then a list comprehension is used to collect all the diagonals. The range
# is -x+1 to y (exclusive of y), so for a matrix like the example above
# (x,y) = (4,5) = -3 to 4.
diags = [a[::-1,:].diagonal(i) for i in range(-a.shape[0]+1,a.shape[1])]
# Now back to the original array to get the upper-left-to-lower-right diagonals,
# starting from the right, so the range needed for shape (x,y) was y-1 to -x+1 descending.
diags.extend(a.diagonal(i) for i in range(a.shape[1]-1,-a.shape[0],-1))
# Another list comp to convert back to Python lists from numpy arrays,
# so it prints what you requested.
print [n.tolist() for n in diags]
输出
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[0], [4, 1], [8, 5, 2], [9, 6, 3], [10, 7], [11], [3], [2, 7], [1, 6, 11], [0, 5, 10], [4, 9], [8]]
解决方案 2:
我偶然发现了这个问题的另一个有趣的解决方案。通过查看 x 和 y 的组合,可以立即发现行、列、前对角线和后对角线。
Column = x Row = y F-Diag = x+y B-Diag = x-y B-Diag` = x-y-MIN
| 0 1 2 | 0 1 2 | 0 1 2 | 0 1 2 | 0 1 2
--|--------- --|--------- --|--------- --|--------- --|---------
0 | 0 1 2 0 | 0 0 0 0 | 0 1 2 0 | 0 1 2 0 | 2 3 4
1 | 0 1 2 1 | 1 1 1 1 | 1 2 3 1 |-1 0 1 1 | 1 2 3
2 | 0 1 2 2 | 2 2 2 2 | 2 3 4 2 |-2 -1 0 2 | 0 1 2
从图中可以看出,使用这些方程式可以唯一地识别每条对角线和轴。从每个表中取出每个唯一数字,并为该标识符创建一个容器。
请注意,后向对角线已偏移从零索引开始,并且前向对角线的长度始终等于后向对角线的长度。
test = [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
max_col = len(test[0])
max_row = len(test)
cols = [[] for _ in range(max_col)]
rows = [[] for _ in range(max_row)]
fdiag = [[] for _ in range(max_row + max_col - 1)]
bdiag = [[] for _ in range(len(fdiag))]
min_bdiag = -max_row + 1
for x in range(max_col):
for y in range(max_row):
cols[x].append(test[y][x])
rows[y].append(test[y][x])
fdiag[x+y].append(test[y][x])
bdiag[x-y-min_bdiag].append(test[y][x])
print(cols)
print(rows)
print(fdiag)
print(bdiag)
这将打印
[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
[[1], [2, 4], [3, 5, 7], [6, 8, 10], [9, 11], [12]]
[[10], [7, 11], [4, 8, 12], [1, 5, 9], [2, 6], [3]]
使用 defaultdict 和 lambda,可以进一步概括:
from collections import defaultdict
def groups(data, func):
grouping = defaultdict(list)
for y in range(len(data)):
for x in range(len(data[y])):
grouping[func(x, y)].append(data[y][x])
return list(map(grouping.get, sorted(grouping)))
test = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
cols = groups(test, lambda x, y: x)
rows = groups(test, lambda x, y: y)
fdiag = groups(test, lambda x, y: x + y)
bdiag = groups(test, lambda x, y: x - y)
解决方案 3:
从右上倾斜的对角线开始。
如果 (x,y) 是矩阵内的直角坐标,则需要将其转换为/从坐标方案 (p,q),其中 p 是对角线的数量,q 是沿对角线的索引。 (因此 p=0 是 [-2] 对角线,p=1 是 [9,5] 对角线,p=2 是 [3,-6,3] 对角线,依此类推。)
要将 (p,q) 转换为 (x,y),可以使用:
x = q
y = p - q
尝试插入 p 和 q 的值来查看其如何工作。
现在你只需循环...对于 p 从 0 到 2N-1,以及 q 从 max(0, p-N+1) 到 min(p, N-1)。将 p、q 转换为 x、y 并打印。
然后对于其他对角线,重复循环但使用不同的变换:
x = N - 1 - q
y = p - q
(这实际上只是将矩阵左右翻转。)
抱歉,我实际上没有用 Python 编写这段代码。:-)
解决方案 4:
我最近又重新发明了这个轮子。下面是一个易于重用/扩展的方法来查找正方形列表中的对角线:
def get_diagonals(grid, bltr = True):
dim = len(grid)
assert dim == len(grid[0])
return_grid = [[] for total in xrange(2 * len(grid) - 1)]
for row in xrange(len(grid)):
for col in xrange(len(grid[row])):
if bltr: return_grid[row + col].append(grid[col][row])
else: return_grid[col - row + (dim - 1)].append(grid[row][col])
return return_grid
假设列表索引:
00 01 02 03
10 11 12 13
20 21 22 23
30 31 32 33
然后设置bltr = True
(默认),返回从左下到右上的对角线,即
00 # row + col == 0
10 01 # row + col == 1
20 11 02 # row + col == 2
30 21 12 03 # row + col == 3
31 22 13 # row + col == 4
32 23 # row + col == 5
33 # row + col == 6
设置bltr = False
,返回从左下到右上的对角线,即
30 # (col - row) == -3
20 31 # (col - row) == -2
10 21 32 # (col - row) == -1
00 11 22 33 # (col - row) == 0
01 12 23 # (col - row) == +1
02 13 # (col - row) == +2
03 # (col - row) == +3
这是使用 OP 的输入矩阵的可运行版本。
解决方案 5:
Itertools 来救援!带有一些不错的单行代码...
对于dim
xdim
方阵,
itertools.groupby(
sorted(itertools.product(range(dim), repeat=2), key=sum),
key=sum,
)
对于任意nrow
x 的ncol
情况,
itertools.groupby(
sorted(itertools.product(range(nrow), range(ncol)), key=sum),
key=sum,
)
这是如何工作的?我们想要查看行和列索引的所有组合 --- 这是一个乘积。按(row, col)
坐标和排序以获得升序对角线(即,(0, 0)
具有0
和并将首先排序)。的稳定性sort
和的迭代顺序product
使我们沿着相同和的对角线进行顺序排序。最后,groupby
将我们的对角线聚集在一起。
示例
和dim = 3
,
>>> import itertools as it
>>> for diagonal, coords in it.groupby(
... sorted(it.product(range(3), repeat=2), key=sum),
... key=sum,
...):
... print(f"{diagonal=}")
... print("coords=", [*coords], "
")
...
diagonal=0
coords= [(0, 0)]
diagonal=1
coords= [(0, 1), (1, 0)]
diagonal=2
coords= [(0, 2), (1, 1), (2, 0)]
diagonal=3
coords= [(1, 2), (2, 1)]
diagonal=4
coords= [(2, 2)]
和,nrow=3
ncol=2
>>> for diagonal, coords in it.groupby(
... sorted(it.product(range(3), range(2)), key=sum),
... key=sum,
...):
... print(f"{diagonal=}")
... print("coords=", [*coords], "
")
...
diagonal=0
coords= [(0, 0)]
diagonal=1
coords= [(0, 1), (1, 0)]
diagonal=2
coords= [(1, 1), (2, 0)]
diagonal=3
coords= [(2, 1)]
解决方案 6:
Python 式方法
对于纯 Python 实现,我建议在 1D 中工作。
W, H = len(mat[0]), len(mat)
idx = range(W-1) + range(W-1, W*H, W)
rng = range(1, W) + range(H, 0, -1)
rng = map(lambda x: x if (x < min(W, H)) else min(W, H), rng)
dia = [[i + (W-1) * m for m in xrange(r)] for i, r in zip(idx, rng)]
这里dia
返回每个对角线的索引列表。要检索相应的值:
arr = [e for row in mat for e in row] #Flatten the matrix
for d in dia:
print [arr[e] for e in d][::-1]
[-2]
[9, 5]
[3, -6, 3]
[-1, 2, 5, 2]
[8, 7, 1]
[-4, 3]
[8]
如果要返回相反方向的值:
arr2 = [e for row in zip(*mat[::-1]) for e in row] #Flatten and rotate the matrix by 90°
for d in dia[::-1]:
print [arr2[e] for e in d]
[2]
[3, 1]
[5, 5, 3]
[-2, -6, 7, 8]
[9, 2, -4]
[3, 8]
[-1]
Numpy 方法
tril = [np.flip(np.fliplr(mat).diagonal(n)) for n in xrange(mat.shape[0])][::-1]
trir = [np.flipud(mat).diagonal(n) for n in xrange(1, mat.shape[0])]
dia = tril + trir
[array([-2]),
array([9, 5]),
array([ 3, -6, 3]),
array([-1, 2, 5, 2]),
array([8, 7, 1]),
array([-4, 3]),
array([8])]
解决方案 7:
我想现在有一种更简单的方法可以做到这一点。(但只有当您已经熟悉上述答案时才使用此方法)。
from collections import defaultdict
有一种称为defaultdict的方法,它是从collections模块导入的,如果您不知道要使用的键,则可以使用该方法来创建字典。
我们在以下情况下使用它:
如果您不知道密钥但想为特定密钥分配一些值。
如果字典中不存在该键,则普通字典会引发 keyerror。但是这个不会(如果需要,您可以为其分配一些函数)
导入后,可以运行以下代码并检查。
rows,cols = 3,3
matrix = [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
diagonal1 = defaultdict(list) # For the top right to bottom left
diagonal2 = defaultdict(list) # For the top left to bottom right
for i in range(rows):
for j in range(cols):
diagonal1[i-j].append(matrix[i][j])
diagonal2[i+j].append(matrix[i][j])
print(diagonal1,'
',diagonal2)
列表参数将为该特定键创建一个值列表。
输出如下:
defaultdict(<class 'list'>, {0: [1, 5, 9], -1: [2, 6], -2: [3], 1: [4, 8], 2: [7]})
defaultdict(<class 'list'>, {0: [1], 1: [2, 4], 2: [3, 5, 7], 3: [6, 8], 4: [9]})
现在您可以根据需要使用两条对角线。
要了解有关 defaultdict 的更多信息,请使用此链接:
单击此处
解决方案 8:
这只适用于宽度和高度相等的矩阵。
但它也不依赖任何第三方。
matrix = [[11, 2, 4],[4, 5, 6],[10, 8, -12]]
# only works for diagnoals of equal width and height
def forward_diagonal(matrix):
if not isinstance(matrix, list):
raise TypeError("Must be of type list")
results = []
x = 0
for k, row in enumerate(matrix):
# next diag is (x + 1, y + 1)
for i, elm in enumerate(row):
if i == 0 and k == 0:
results.append(elm)
break
if (x + 1 == i):
results.append(elm)
x = i
break
return results
print 'forward diagnoals', forward_diagonal(matrix)
解决方案 9:
根据上述 Nemo 的回答编写的代码:
def print_diagonals(matrix):
n = len(matrix)
diagonals_1 = [] # lower-left-to-upper-right diagonals
diagonals_2 = [] # upper-left-to-lower-right diagonals
for p in range(2*n-1):
diagonals_1.append([matrix[p-q][q] for q in range(max(0, p - n + 1), min(p, n - 1) + 1)])
diagonals_2.append([matrix[n-p+q-1][q] for q in range(max(0, p - n + 1), min(p, n - 1) + 1)])
print("lower-left-to-upper-right diagonals: ", diagonals_1)
print("upper-left-to-lower-right diagonals: ", diagonals_2)
print_diagonals([
[1, 2, 1, 1],
[1, 1, 4, 1],
[1, 3, 1, 6],
[1, 7, 2, 5],
])
lower-left-to-upper-right diagonals: [[1], [1, 2], [1, 1, 1], [1, 3, 4, 1], [7, 1, 1], [2, 6], [5]]
upper-left-to-lower-right diagonals: [[1], [1, 7], [1, 3, 2], [1, 1, 1, 5], [2, 4, 6], [1, 1], [1]]
解决方案 10:
尝试一下:
import numpy as np
matrix = [[-2, 5, 3, 2],
[ 9, -6, 5, 1],
[ 3, 2, 7, 3],
[-1, 8, -4, 8]]
matrix = np.array(matrix)
matrix = np.flipud(matrix)
a = matrix.shape[0]
list_ = [np.diag(matrix, k=i).tolist() for i in range(-a+1,a)]
print(list_)
输出:
[[-2], [9, 5], [3, -6, 3], [-1, 2, 5, 2], [8, 7, 1], [-4, 3], [8]]
解决方案 11:
尝试使用 dict
mat = [[-2, 5, 3, 2],
[ 9, -6, 5, 1],
[ 3, 2, 7, 3],
[-1, 8, -4, 8]]
dct = dict()
for i in range(len(mat)-1,-len(mat[0]),-1):
dct[i] = []
for i in range(len(mat)):
for j in range(len(mat[0])):
dct[i-j].append(mat[i][j])
print(dct)
输出:
{3: [-1], 2: [3, 8], 1: [9, 2, -4], 0: [-2, -6, 7, 8], -1: [5, 5, 3], -2: [3, 1], -3: [2]}
解决方案 12:
使用 itertools
matrix = [[-2, 5, 3, 2],
[ 9, -6, 5, 1],
[ 3, 2, 7, 3],
[-1, 8, -4, 8]]
import itertools as it
def show_diagonals(alist):
# get row/col lenght
a = len(alist)
# creating a fliped matrix
rlist = []
for r in alist:
new = r.copy()
new.reverse()
rlist.append(new)
flatten_list = list(it.chain.from_iterable(alist))
flatten_rlist = list(it.chain.from_iterable(rlist))
b = len(flatten_list)
first_diag = list(it.islice(flatten_list, 0, b+1, a+1))
second_diag = list(it.islice(flatten_rlist, 0, b+1, a+1))
return first_diag, second_diag
a, b = show_diagonals(matrix)
解决方案 13:
使用一些 numpy-fu 来获取主对角线:
import numpy as np
r = np.arange(36)
r.resize((6, 6))
print(r)
r = r.reshape(len(r)**2)[::len(r)+1]
print(r)
印刷:
[[ 0 1 2 3 4 5]
[ 6 7 8 9 10 11]
[12 13 14 15 16 17]
[18 19 20 21 22 23]
[24 25 26 27 28 29]
[30 31 32 33 34 35]]
[ 0 7 14 21 28 35]
解决方案 14:
从这里:np.Diagonal
np.diagonal(matrix)
扫码咨询,免费领取项目管理大礼包!